Exceptional sets for Poisson integrals of potentials on the unit sphere in \({\mathbb{C}}^ n\), \(p\leq l\) (Q754008)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Exceptional sets for Poisson integrals of potentials on the unit sphere in \({\mathbb{C}}^ n\), \(p\leq l\) |
scientific article; zbMATH DE number 4181730
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Exceptional sets for Poisson integrals of potentials on the unit sphere in \({\mathbb{C}}^ n\), \(p\leq l\) |
scientific article; zbMATH DE number 4181730 |
Statements
Exceptional sets for Poisson integrals of potentials on the unit sphere in \({\mathbb{C}}^ n\), \(p\leq l\) (English)
0 references
1992
0 references
We show that the exceptional sets for Poisson-Szepö integrals of non- isotropic potentials of \(H^ p\) functions on the unit sphere in \({\mathbb{C}}^ n\) have certain non-isotropic Hausdorff measure zero.
0 references
exceptional sets
0 references
Poisson-Szepö integrals
0 references
\(H^ p\) functions
0 references