Asymptotische Entwicklungen der konfluenten hypergeometrischen Funktionen U(a,b,z) und M(a,b,z) für große Werte von b und z. (Asymptotic expansions of confluent hypergeometric functions U(a,b,z) and M(a,b,z) for large values of b and z) (Q755951)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotische Entwicklungen der konfluenten hypergeometrischen Funktionen U(a,b,z) und M(a,b,z) für große Werte von b und z. (Asymptotic expansions of confluent hypergeometric functions U(a,b,z) and M(a,b,z) for large values of b and z) |
scientific article; zbMATH DE number 4190146
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotische Entwicklungen der konfluenten hypergeometrischen Funktionen U(a,b,z) und M(a,b,z) für große Werte von b und z. (Asymptotic expansions of confluent hypergeometric functions U(a,b,z) and M(a,b,z) for large values of b and z) |
scientific article; zbMATH DE number 4190146 |
Statements
Asymptotische Entwicklungen der konfluenten hypergeometrischen Funktionen U(a,b,z) und M(a,b,z) für große Werte von b und z. (Asymptotic expansions of confluent hypergeometric functions U(a,b,z) and M(a,b,z) for large values of b and z) (English)
0 references
1990
0 references
Asymptotic expansions are derived for the confluent hypergeometric functions U(a,b,z) and M(a,b,z). The parameter b and z are real and large. As is known, a transition point shows up when \(z\sim b\). Several publications are available for this asymptotic problem, in which parabolic cylinder functions are used to describe the phenomena. The present paper gives complete new expansions in terms of elementary functions for the case that \(y=z/b\) is fixed; \(y<1\) and \(y>1\) are treated separately. Later it is verified that the results include the cases \(b\to \infty\), z fixed and \(z\to \infty\), b fixed. Starting points for the investigations are the familiar integral representations of the Kummer functions.
0 references
Whittaker function
0 references
confluent hypergeometric functions
0 references
0.9326169
0 references
0.90991586
0 references
0.89364153
0 references
0.8854879
0 references
0.8849164
0 references
0.8788034
0 references
0.8731073
0 references
0.86877453
0 references