Symmetric properties of eigenfunctions of the Laplace operator on compact Riemannian manifolds (Q756717)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Symmetric properties of eigenfunctions of the Laplace operator on compact Riemannian manifolds |
scientific article; zbMATH DE number 4192563
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Symmetric properties of eigenfunctions of the Laplace operator on compact Riemannian manifolds |
scientific article; zbMATH DE number 4192563 |
Statements
Symmetric properties of eigenfunctions of the Laplace operator on compact Riemannian manifolds (English)
0 references
1991
0 references
Let \(M^ m\) be a compact Riemannian manifold without boundary. Let \({\mathcal F}_ k\) be the eigenspace of the Laplacian corresponding to the kth eigenvalue \(\lambda_ k\) where \(0=\lambda_ 0<\lambda_ 1<..\). If \(0\neq u\in {\mathcal F}_ k\), then \(\int_{M}u=0\) so u has both positive and negative values. Let \[ \alpha_ k=\inf \{-\inf_ Mu/\sup_ Mu: u\in {\mathcal F}_ k\}; \] 0\(<\alpha_ k\leq 1\) and if \(\alpha_ k=1\), then the eigenfunctions are amplitude symmetric. For example, \(\alpha_ 1(RP^ m)=\alpha_ 2(S^ m)=m^{-1}.\) If M has nonnegative Ricci curvature, the author gives a lower bound for \(\alpha_ k(M)\). He shows \(\alpha_ k(M)\geq (1-\beta (k,m))/(1+\beta (k,m))\) where \(\beta\) (k,m) is defined by: \[ \int^{1}_{-1}\{(1+\beta (k,m)t)(1-t^ 2)\}^{-1/2} dt=km(2(m+4))^{1/2}. \] The author also gives an upper bound for \(\alpha_ k(M)\).
0 references
Laplacian
0 references
nonnegative Ricci curvature
0 references
lower bound
0 references
0.9403211
0 references
0.9380674
0 references
0.9313468
0 references
0.9281894
0 references
0.92491657
0 references
0.9244673
0 references
0.91602707
0 references
0.9128998
0 references