Horocycle flow on geometrically finite surfaces (Q756822)

From MaRDI portal





scientific article; zbMATH DE number 4192720
Language Label Description Also known as
English
Horocycle flow on geometrically finite surfaces
scientific article; zbMATH DE number 4192720

    Statements

    Horocycle flow on geometrically finite surfaces (English)
    0 references
    0 references
    1990
    0 references
    Suppose \(S=\Gamma \setminus D^ 2\) is a quotient of the Poincaré disc by a finitely generated discrete group \(\Gamma\) of orientation preserving isometries acting without fixed points on \(D^ 2\). The group of orientation preserving isometries of \(D^ 2\) is \(PSL(2,{\mathbb{R}})\) and the unit tangent bundle \(T_ 1S\) of S is a homogeneous space of \(PSL(2,{\mathbb{R}}):\) \(T_ 1S=\Gamma \setminus PSL(2,{\mathbb{R}}).\) The unipotent subgroup of PSL(2,\({\mathbb{R}})\), \(N=\{n(x)=\begin{pmatrix} 1&x \\ 0&1 \end{pmatrix}:\) \(x\in {\mathbb{R}}\}\) acts on \(T_ 1S\). The author determines all N-invariant Radon measures on \(T_ 1S\).
    0 references
    horocycle flow
    0 references
    finite subspaces
    0 references
    extremal generator
    0 references
    Laplacian
    0 references
    Poincaré disc
    0 references
    unit tangent bundle
    0 references
    Radon measures
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references