A numerical scheme for the study of Poynting effect in wave propagation problems with finite boundaries (Q759550)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A numerical scheme for the study of Poynting effect in wave propagation problems with finite boundaries |
scientific article; zbMATH DE number 3882000
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A numerical scheme for the study of Poynting effect in wave propagation problems with finite boundaries |
scientific article; zbMATH DE number 3882000 |
Statements
A numerical scheme for the study of Poynting effect in wave propagation problems with finite boundaries (English)
0 references
1984
0 references
A second order effect, involving a change of length or an axial force, is present in hyperelastic cylindrical rods subjected to a finite twist. This second order effect leads to a coupling of torsional and longitudinal waves in such rods when they are subjected to finite deformations. In this paper, effects of such a coupling has been studied for cylindrical rods of finite length. The resulting finite deformation elastodynamic problem has been solved by a finite difference method which is a MacCormack two-step variant of Lax-Wendroff second order accurate scheme. The accuracy of the numerical technique has been calibrated by comparing solutions with reported similarity solutions for semi-infinite rods. New results have been presented for finite rods and different loading conditions.
0 references
second order effect
0 references
change of length
0 references
axial force
0 references
hyperelastic cylindrical rods
0 references
finite twist
0 references
coupling of torsional and longitudinal waves
0 references
cylindrical rods of finite length
0 references
elastodynamic problem
0 references
finite difference method
0 references
MacCormack two-step variant of Lax-Wendroff second order accurate scheme
0 references