Über die Verallgemeinerung eines Ergodensatzes von Dunford (Q760646)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Über die Verallgemeinerung eines Ergodensatzes von Dunford |
scientific article; zbMATH DE number 3884801
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Über die Verallgemeinerung eines Ergodensatzes von Dunford |
scientific article; zbMATH DE number 3884801 |
Statements
Über die Verallgemeinerung eines Ergodensatzes von Dunford (English)
0 references
1985
0 references
Let E be a complex Banach space and T a bounded linear operator. We prove that \((1/n^ p)\sum^{n-1}_{k=0}T^ k\) converges uniformly if 1 is a pole of the resolvent of order at most p and if \(\| T^ n/n^ p\| \to 0\) for a certain \(p\in {\mathbb{N}}\). The latter condition is valid if T has spectral radius 1 and if the peripheral spectrum of T consists only of poles of the resolvent.
0 references
ergodic theorem of Dunford
0 references
spectral radius
0 references
peripheral spectrum
0 references