Équations de Monge-Ampère invariantes sur les variétés Riemanniennes compactes (Q760699)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Équations de Monge-Ampère invariantes sur les variétés Riemanniennes compactes |
scientific article; zbMATH DE number 3885024
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Équations de Monge-Ampère invariantes sur les variétés Riemanniennes compactes |
scientific article; zbMATH DE number 3885024 |
Statements
Équations de Monge-Ampère invariantes sur les variétés Riemanniennes compactes (English)
0 references
1984
0 references
Let \((V_ n,g)\) be a smooth n-dimensional compact Riemannian manifold without boundary. Let \(g'\) be a map which assigns to the second covariant jet (in the metric \(g\)) of any \(C^ k\) function \(\phi\) on \(V_ n\), \(k\geq 2\), a field \(g'_{\phi}\) twice covariant and symmetric. The author takes g' such that there exists \(\phi\in C^ k(V_ n)\), \(k\geq 2\), admissible, i.e. for which \(Tr[(g'_{\phi})^{-1}\cdot \partial g'_{\phi}/\partial (\nabla^ 2\phi)]\) is a new metric. Then, given F smooth, one may consider the following nonlinear elliptic problem of Monge-Ampère type: find \(\phi \in C^{\infty}(V_ n)\) admissible, solution of the equation \[ M(\phi):=(| g'_{\phi}| \cdot | g|^{-1})=\exp [F(P,\nabla \phi;\phi)], \] where P denotes a generic point of \(V_ n\) (the admissibility of \(\phi\) means that the symbol of the differential map \(d(\log M(\phi))\) is positive definite). In the present article the author gives some existence and uniqueness results for such Monge-Ampère problem under additional invariance conditions.
0 references
Monge-Ampère problem
0 references
nonlinear elliptic system on a manifold
0 references