Fractions continues - sommes de Dedekind et formes quadratiques (Q762193)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Fractions continues - sommes de Dedekind et formes quadratiques |
scientific article; zbMATH DE number 3887768
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Fractions continues - sommes de Dedekind et formes quadratiques |
scientific article; zbMATH DE number 3887768 |
Statements
Fractions continues - sommes de Dedekind et formes quadratiques (English)
0 references
1984
0 references
Let \(A=a_ 0,...,a_ n\) be a sequence of nonnegative integers. Then we denote by \([a_ 0,...,a_ n]\) the continued fraction expansion \(a_ 0+1/(a_ 1+1/(a_ 2+...+1/a_ n)...)\). We denote the sequence \(a_ n...,a_ 1,a_ 0\) by \(\bar A.\) Let \(\lambda\in {\mathbb{Z}}\) be given. In this paper the authors prove that there exists a finite set of sequences C(\(\lambda)\) such that if h \(| k^ 2-k+1\) and \(h>k-\lambda\), \(k\geq \lambda\) then \(h/k=[A,\alpha,\bar A]\) for some sequence A and some \(\alpha\in C(\lambda)\). This is an interesting generalization of Perron's theorem for \(\lambda =0\), where C(\(\lambda)\) is empty. The theorem can be used for simplified calculation of Dedekind sums S(h,k) for certain h,k. For example if \(h_ 1h_ 2=k^ 2+k+1\) then \(S(h_ 1,h_ 2)=(h_ 1+h_ 2-2k)/12k\). In the final sections several examples are given.
0 references
continued fraction expansion
0 references
generalization of Perron's theorem
0 references
simplified calculation of Dedekind sums
0 references
0 references
0.8871604
0 references
0.8852902
0 references
0.88371485
0 references