Uniqueness of Lorentzian Hopf tori (Q763053)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Uniqueness of Lorentzian Hopf tori |
scientific article; zbMATH DE number 6013277
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Uniqueness of Lorentzian Hopf tori |
scientific article; zbMATH DE number 6013277 |
Statements
Uniqueness of Lorentzian Hopf tori (English)
0 references
8 March 2012
0 references
The setting of this work is provided by a \textit{Lorentzian Killing submersion}, a notion introduced by the author in correspondence with the similar Riemannian concept. In such a manifold two smooth functions, \(k\) and \(\tau \), are introduced. The main result of the paper states that if \(\tau \) is constant and \(k+4\tau ^2\neq 0\) then every Lorentzian flat torus is a Hopf torus.
0 references
Lorentzian flat tori
0 references
Hopf tori
0 references
Bochner formula
0 references
0.86338866
0 references
0.8627675
0 references
0.86097753
0 references
0.86037594
0 references
0.8579511
0 references
0.85684466
0 references
0.8542756
0 references
0 references