Flat \(\phi \) curvature flow of convex sets (Q763714)

From MaRDI portal





scientific article; zbMATH DE number 6019744
Language Label Description Also known as
English
Flat \(\phi \) curvature flow of convex sets
scientific article; zbMATH DE number 6019744

    Statements

    Flat \(\phi \) curvature flow of convex sets (English)
    0 references
    0 references
    29 March 2012
    0 references
    This paper deals with the flat \(\phi \) curvature flow, introduced by \textit{F. Almgren, J. E. Taylor} and \textit{L. Wang} [SIAM J. Control Optimization 31, No. 2, 387--438 (1993; Zbl 0783.35002)] for modelling the \(\phi\)-weighted mean curvature flow [\textit{J. E. Taylor}, J. Geom. Anal. 8, No. 5, 859--864 (1998; Zbl 0968.53046)]. For an arbitrary initial compact convex subset \(K_0\subset \mathbb R^n\), \(n\geq 2\), the author constructs a flat \(\phi \) curvature flow \(K(t)\) such that \(K(t)\) remains compact convex throughout the evolution, the proof is base on a discretization approach, cf. \textit{R. J. McCann} [Commun. Math. Phys. 195, No. 3, 699--723 (1998; Zbl 0936.74029)], \textit{G. Bellettini, V. Caselles, A. Chambolle} and \textit{M. Novaga} [J. Math. Pures Appl. (9) 92, No. 5, 499--527 (2009; Zbl 1178.53066); Arch. Ration. Mech. Anal. 179, No. 1, 109--152 (2006; Zbl 1148.53049)]. Moreover, a new Hölder continuity estimate for the flow is established.
    0 references
    anisotropic mean curvature flow
    0 references
    surface energy
    0 references
    symmetric difference
    0 references
    mobility
    0 references
    Wulff shape
    0 references
    Hölder continuity estimate
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references