On non-linear differential equations of the second order. III: The equation \(\ddot y - k(1-y^2) \dot y +y=b \mu k\cos (\mu t + \alpha)\) for large \(k\), and its generalizations. IV: The general equation \(\ddot y + kf(y) \dot y +g(y)=bkp (\varphi),\;\varphi = t + \alpha\) (Q769529)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On non-linear differential equations of the second order. III: The equation \(\ddot y - k(1-y^2) \dot y +y=b \mu k\cos (\mu t + \alpha)\) for large \(k\), and its generalizations. IV: The general equation \(\ddot y + kf(y) \dot y +g(y)=bkp (\varphi),\;\va |
scientific article; zbMATH DE number 3132973
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On non-linear differential equations of the second order. III: The equation \(\ddot y - k(1-y^2) \dot y +y=b \mu k\cos (\mu t + \alpha)\) for large \(k\), and its generalizations. IV: The general equation \(\ddot y + kf(y) \dot y +g(y)=bkp (\varphi),\;\varphi = t + \alpha\) |
scientific article; zbMATH DE number 3132973 |
Statements
On non-linear differential equations of the second order. III: The equation \(\ddot y - k(1-y^2) \dot y +y=b \mu k\cos (\mu t + \alpha)\) for large \(k\), and its generalizations. IV: The general equation \(\ddot y + kf(y) \dot y +g(y)=bkp (\varphi),\;\varphi = t + \alpha\) (English)
0 references
1957
0 references
nonlinear ordinary differential equations of second order
0 references