The order of the zeta function near the line \(\sigma=1\) (Q769640)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The order of the zeta function near the line \(\sigma=1\) |
scientific article; zbMATH DE number 3133633
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The order of the zeta function near the line \(\sigma=1\) |
scientific article; zbMATH DE number 3133633 |
Statements
The order of the zeta function near the line \(\sigma=1\) (English)
0 references
1957
0 references
\(\zeta(s, \omega)\) bezeichnet die Hurwitzfunktion. Es gibt \(\mu_1(\sigma)\), so daß \[ \vert\zeta(s, \omega)\vert \le \beta_2(\sigma)t^{\mu_1}\qquad (\tfrac12< \sigma < 1).\] \(\mu = \inf \mu_1\), so war bekannt [\textit{J. G. van der Corput} and \textit{J. F. Koksma}, Ann. Fac. Sci. Univ. Toulouse (3) 22, 1--39 (1930; JFM 56.0978.03)] , daß \[ \mu(1- [q/(Q -2)], \omega) \le 1/(Q -2)\quad (Q = 2^q\text{ und }q\text{ ganz)} \] gilt. Verbesserungen wurden (für \(\omega = 1)\) erzielt. Hier wird mit Hilfe Vinogradovscher Summen folgendes allgemeinere und verbesserte Resultat erzielt: \[ \mu(\sigma,\omega) < \frac{1-\sigma}{\log 1/(1-\sigma)} \log 2\left\{1 - \frac{\log\log 1/(1-\sigma)}{\log 1/(1 - \sigma) } + \frac{\omega}{\log 1/(1-\sigma)} \right\} \] gültig für \(1\ge \omega > (\log 4)/e\) und \(C(\omega) < \sigma < 1\). Die Beweismethode ist technisch diffizil, ohne aber grundlegend neue Wege zu gehen.
0 references
Hurwitz zeta function
0 references
0.94896054
0 references
0.9292697
0 references
0.90963864
0 references
0.9062639
0 references
0.8896977
0 references
0.88276255
0 references
0.88106745
0 references