Asymptotics of Moore exponent sets (Q778719)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Asymptotics of Moore exponent sets
scientific article

    Statements

    Asymptotics of Moore exponent sets (English)
    0 references
    0 references
    0 references
    3 July 2020
    0 references
    Consider a general Moore matrix \(M\), that is a \(k\times k\) matrix \[ M(\alpha):=\left( \begin{matrix} \alpha_0 & \alpha_0^{q} & \cdots & \alpha_0^{q^{k-1}} \\ \alpha_1 & \alpha_1^{q} & \cdots & \alpha_1^{q^{k-1}} \\ \vdots& \vdots & \ddots & \vdots \\ \alpha_{k-1} & \alpha_{k-1}^{q} & \cdots & \alpha_{k-1}^{q^{k-1}} \end{matrix} \right) \] for a given vector \(\alpha=(\alpha_0,\dots,\alpha_{k-1})\in\mathbb{F}_{q^n}^k\) , i.e. \(k\times k\) square matrix whose \(i\)-th column is given by the \(q^{i-1}\)-th power of \(\alpha\). A very famous result regarding Moore matrices states that \(\det(M(\alpha))=0\) if and only if \(\alpha_0,\dots,\alpha_{k-1}\) are \(\mathbb{F}_q\) linearly dependent. In this paper, the authors investigate a generalization of this result to matrices having shape, for a given \(I=(i_0,\dots,i_{k-1})\in\mathbb{N}^k\) \[ M_{\alpha,I}:=\left( \begin{matrix} \alpha_0^{q^{i_0}} & \alpha_0^{q^{i_1}} & \cdots & \alpha_0^{q^{i_{k-1}}} \\ \alpha_1^{q^{i_0}} & \alpha_1^{q^{i_1}} & \cdots & \alpha_1^{q^{i_{k-1}}} \\ \vdots& \vdots & \ddots & \vdots \\ \alpha_{k-1}^{q^{i_0}} & \alpha_{k-1}^{q^{i_1}} & \cdots & \alpha_{k-1}^{q^{i_{k-1}}} \end{matrix} \right). \] The authors provide \(k\)-tuples \(I=\{0,i_1,\dots,i_{k-1}\}\) (known as Moore exponent sets) such that if \(\det(M(\alpha,i))=0\) then \(\alpha_0,\dots,\alpha_{k-1}\) are \(\mathbb{F}_q\) linearly dependent. This results has non-trivial implications in rank-metric codes, since it is strictly bounded to MRD-codes (i.e. the \(q\)-analog of MDS codes).
    0 references
    0 references
    Moore matrix
    0 references
    maximum rank-distance code
    0 references
    finite geometry
    0 references
    Hasse-Weil bound
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references