Bounds for the eigenvalues of monic matrix polynomials from numerical radius inequalities (Q782516)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bounds for the eigenvalues of monic matrix polynomials from numerical radius inequalities |
scientific article; zbMATH DE number 7225052
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bounds for the eigenvalues of monic matrix polynomials from numerical radius inequalities |
scientific article; zbMATH DE number 7225052 |
Statements
Bounds for the eigenvalues of monic matrix polynomials from numerical radius inequalities (English)
0 references
27 July 2020
0 references
Consider a matrix polynomial \[ P(z)=Iz^m+A_mz^{m-1}+\dots+A_2z+A_1,\quad m\ge 2,\,\, A_1,\dots,A_m\in\mathbb{C}^{n\times n}, \] and its Frobenius companion matrix \(C(P)\in\mathbb{C}^{mn\times mn}\). Let \(w(\cdot)\) and \(\|\cdot\|\) denote the numerical radius and spectral norm, respectively. The authors present five upper bounds for \(w(C(P))\). One of them, \[ w(C(P))\le\frac{1}{2}\Bigg(w(A_m)+\sqrt{w(A_m)^2+\sum_{i=1}^{m-1}\|A_i\|^2}\Bigg)+\cos\frac{\pi}{m+1}, \] improves a bound of \textit{N. J. Higham} and \textit{F. Tisseur} [Linear Algebra Appl. 358, 5--22 (2003; Zbl 1055.15030)].
0 references
matrix polynomials
0 references
companion matrix
0 references
numerical radius
0 references
eigenvalues
0 references
0 references
0.9296109
0 references
0 references
0.92251146
0 references
0.9218041
0 references
0.9080926
0 references
0.90744793
0 references