On criteria related to the reciprocal of the Riemann zeta function (Q782767)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On criteria related to the reciprocal of the Riemann zeta function
scientific article

    Statements

    On criteria related to the reciprocal of the Riemann zeta function (English)
    0 references
    29 July 2020
    0 references
    \textit{G. H. Hardy} and \textit{J. E. Littlewood} [Acta Math. 41, 119--196 (1917; JFM 46.0498.01)] proved that the Riemann Hypothesis for the Riemann zeta function holds if \[ \sum\limits_{n=1}^{\infty} \frac{(-x)^n}{n! \zeta(2n+1)}=O(x^{-1/4+\varepsilon}) \] for every \(\varepsilon>0\). This connects the Riemann Hypothesis with odd zeta values. \textit{A. Dixit} [Pac. J. Math. 255, No. 2, 317--348 (2012; Zbl 1320.11078)] suggested to try writing the left-hand side as a Fourier transform involving the Riemann xi function \(\Xi(t)=\xi(1/2+it)\), where \(\xi(s)=\frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)\). Unfortunately, the natural candidate \[ \int\limits_0^{\infty} \frac{\Xi(t)\cos((\log x)t)}{(t^2+\frac{1}{4})|\zeta(\frac{1}{2}+it)|^2} dt \] does not work: This integral does not converge since the zeta function has infinitely many zeros on the line \(\Re (s)=\frac{1}{2}\). The author considers integrals of the form \[ \int\limits_0^{\infty} \frac{f(t)\cos((\log x)t)}{|\zeta(1+2it)|^2} dt \] for a suitable function \(f(t)\). This appears no less interesting and may give a new route to RH criteria. In particular, he proves that under the Riemann Hypothesis, \[ \int\limits_0^{\infty} \frac{\cos((\log x)t)}{\cosh(\pi t)|\zeta(1+2it)|^2} dt= \pi \sum\limits_{n,m\ge 1} \frac{\mu(n)\mu(m)}{n^2e^{-x/2}+m^2e^{x/2}} \] and \[ \sum\limits_{n,m\ge 1} \frac{\mu(n)\mu(m)}{n^2x+m^2}= \begin{cases} O(x^{-1/4}) & \mbox{ as } x\rightarrow 0^+\\ O(x^{-3/4+\varepsilon}) & \mbox{ as } x\rightarrow \infty. \end{cases} \]
    0 references
    0 references
    Riesz criteria
    0 references
    Riemann zeta function
    0 references
    Möbius function
    0 references

    Identifiers