On criteria related to the reciprocal of the Riemann zeta function (Q782767)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On criteria related to the reciprocal of the Riemann zeta function |
scientific article |
Statements
On criteria related to the reciprocal of the Riemann zeta function (English)
0 references
29 July 2020
0 references
\textit{G. H. Hardy} and \textit{J. E. Littlewood} [Acta Math. 41, 119--196 (1917; JFM 46.0498.01)] proved that the Riemann Hypothesis for the Riemann zeta function holds if \[ \sum\limits_{n=1}^{\infty} \frac{(-x)^n}{n! \zeta(2n+1)}=O(x^{-1/4+\varepsilon}) \] for every \(\varepsilon>0\). This connects the Riemann Hypothesis with odd zeta values. \textit{A. Dixit} [Pac. J. Math. 255, No. 2, 317--348 (2012; Zbl 1320.11078)] suggested to try writing the left-hand side as a Fourier transform involving the Riemann xi function \(\Xi(t)=\xi(1/2+it)\), where \(\xi(s)=\frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)\). Unfortunately, the natural candidate \[ \int\limits_0^{\infty} \frac{\Xi(t)\cos((\log x)t)}{(t^2+\frac{1}{4})|\zeta(\frac{1}{2}+it)|^2} dt \] does not work: This integral does not converge since the zeta function has infinitely many zeros on the line \(\Re (s)=\frac{1}{2}\). The author considers integrals of the form \[ \int\limits_0^{\infty} \frac{f(t)\cos((\log x)t)}{|\zeta(1+2it)|^2} dt \] for a suitable function \(f(t)\). This appears no less interesting and may give a new route to RH criteria. In particular, he proves that under the Riemann Hypothesis, \[ \int\limits_0^{\infty} \frac{\cos((\log x)t)}{\cosh(\pi t)|\zeta(1+2it)|^2} dt= \pi \sum\limits_{n,m\ge 1} \frac{\mu(n)\mu(m)}{n^2e^{-x/2}+m^2e^{x/2}} \] and \[ \sum\limits_{n,m\ge 1} \frac{\mu(n)\mu(m)}{n^2x+m^2}= \begin{cases} O(x^{-1/4}) & \mbox{ as } x\rightarrow 0^+\\ O(x^{-3/4+\varepsilon}) & \mbox{ as } x\rightarrow \infty. \end{cases} \]
0 references
Riesz criteria
0 references
Riemann zeta function
0 references
Möbius function
0 references
0 references