Über die Wurzelschranke für das Minimalgewicht von Codes (Q789375)

From MaRDI portal





scientific article; zbMATH DE number 3845497
Language Label Description Also known as
English
Über die Wurzelschranke für das Minimalgewicht von Codes
scientific article; zbMATH DE number 3845497

    Statements

    Über die Wurzelschranke für das Minimalgewicht von Codes (English)
    0 references
    0 references
    1984
    0 references
    Let d be the minimum distance of an (n,k) code C, invariant under an abelian group acting transitively on the basis of the ambient space over a field F with char \(F\nmid n\). Assume that C contains the repetition code, that \(\dim(C\cap C^{\perp})=k-1\) and that the supports of the minimal weight vectors of C form a 2-design. Then \(d^ 2-d+1\geq n\) with equality if and only if the design is a projective plane of order d-1. The case \(d^ 2-d+1=n\) can often be excluded with Hall's multiplier theorem on projective planes, a theorem which follows easily from the tools developed in this paper. Moreover, if \(d^ 2-d+1>n\) and \(F=GF(2)\) then \((d-1)^ 2\geq n\). Examples are the generalized quadratic residue codes where \(d^ 2-d+1=n\) implies \(d=3\), char F\(=2\).
    0 references
    repetition code
    0 references
    minimal weight
    0 references
    design
    0 references
    projective plane
    0 references
    generalized quadratic residue codes
    0 references

    Identifiers