The simultaneous diophantine equations \(5Y^ 2-20=X^ 2\) and \(2Y^ 2+1=Z^ 2\) (Q790142)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The simultaneous diophantine equations \(5Y^ 2-20=X^ 2\) and \(2Y^ 2+1=Z^ 2\) |
scientific article; zbMATH DE number 3847472
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The simultaneous diophantine equations \(5Y^ 2-20=X^ 2\) and \(2Y^ 2+1=Z^ 2\) |
scientific article; zbMATH DE number 3847472 |
Statements
The simultaneous diophantine equations \(5Y^ 2-20=X^ 2\) and \(2Y^ 2+1=Z^ 2\) (English)
0 references
1984
0 references
If N is a positive integer with \(N-1=x^ 2\), \(5N-1=y^ 2\), \(10N-1=z^ 2\), and integers x,y,z, then \(N=1\).
0 references
simultaneous quadratic diophantine equations
0 references
Pell equation
0 references
0 references