A note on a paper by S. Haber (Q790974)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on a paper by S. Haber |
scientific article; zbMATH DE number 3849532
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on a paper by S. Haber |
scientific article; zbMATH DE number 3849532 |
Statements
A note on a paper by S. Haber (English)
0 references
1983
0 references
Bewiesen wird die für konvexe Folgen \(\{u_ 0,u_ 1,...,u_ n\}\) geltende Ungleichung \[ \frac{1}{n+1}\sum^{n}_{\nu =0}u_{\nu}\geq \frac{1}{2^ n}\sum^{n}_{\nu =0}(^ n\!_{\nu})u_{\nu} \] mit einer von \textit{S. Haber} [Int. J. Math. Math. Sci. 2, 531-535 (1979; Zbl 0416.26011)] beim Beweis einer ''elementaren Ungleichung'' benutzten Methode.
0 references
convex sequences
0 references
Hadamard's inequality for convex functions
0 references
rearrangements
0 references