Global asymptotic stability in Volterra's population systems (Q791473)

From MaRDI portal





scientific article; zbMATH DE number 3850889
Language Label Description Also known as
English
Global asymptotic stability in Volterra's population systems
scientific article; zbMATH DE number 3850889

    Statements

    Global asymptotic stability in Volterra's population systems (English)
    0 references
    1984
    0 references
    The author establishes the global asymptotic stability of the positive steady state in a population system of the form \[ dx_ i/dt=x_ i(t)(r_ i+ \sum^{n}_{j=1}a_{ij}x_ j(t)+ \sum^{n}_{j=1}b_{ij} \int^{t}_{-\infty}k_{ij} (t-s)x_ j(s)ds), \] \(t>0\), \(i=1,...,n\), under assumptions of diagonal dominance; i.e. \(a_{ii}<0,\) \[ | a_{ii}|> \sum^{n}_{j=1} | b_{ji}| \int^{\infty}_{0} | k_{ji}(s)| ds + \sum^{n}_{j=1,j\neq i} | a_{ji}|. \] Furthermore, a necessary condition for the persistence of positive solutions of the system is given.
    0 references
    positive limit set
    0 references
    population system
    0 references
    hereditary effects
    0 references
    global asymptotic stability
    0 references
    diagonal dominance
    0 references
    persistence of positive solutions
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references