La cohomologie basique d'un feuilletage riemannien est de dimension finie (Q791933)

From MaRDI portal





scientific article; zbMATH DE number 3852038
Language Label Description Also known as
English
La cohomologie basique d'un feuilletage riemannien est de dimension finie
scientific article; zbMATH DE number 3852038

    Statements

    La cohomologie basique d'un feuilletage riemannien est de dimension finie (English)
    0 references
    0 references
    0 references
    0 references
    1985
    0 references
    Let f be a codimension n foliation on a compact connected manifold M. (i) If F is transversally parallelisable we construct a spectral sequence converging to the base-like cohomology \(H^*(M/F)\) of the foliated manifold (M,F) and show that this cohomology is finite dimensional. (ii) If F is Riemannian, the lifted foliation \(\hat F\) to the transverse orthonormal frame bundle \(SO(n)\to \hat M\to M\) is transversally parallelisable. To this fiber bundle we associate a spectral sequence connecting the base-like cohomology of (M,F), the cohomology of (\^M,\^F). Using this spectral sequence and (i) we show that \(H^*(M/F)\) is finite dimensional and \(H^ n(M/F)\) is isomorphic to 0 or \({\mathbb{R}}\).
    0 references
    transversally parallelisable foliations
    0 references
    Riemannian foliations
    0 references
    transverse Euler class
    0 references
    baselike Euler class
    0 references
    codimension n foliation on a compact connected manifold
    0 references
    spectral sequence
    0 references
    base-like cohomology
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references