Comparaison de mesures gaussiennes et de mesures produit (Q791990)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Comparaison de mesures gaussiennes et de mesures produit |
scientific article; zbMATH DE number 3852133
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Comparaison de mesures gaussiennes et de mesures produit |
scientific article; zbMATH DE number 3852133 |
Statements
Comparaison de mesures gaussiennes et de mesures produit (English)
0 references
1984
0 references
The author proves the following: let \(\xi =(\xi_ i)\), \(\eta =(\eta_ i)\) be two random variables with values in \({\mathbb{R}}^{\infty}={\mathbb{R}}\times {\mathbb{R}}\times..\). such that \(\xi\) is Gaussian, the \(\eta_ i's\) are independent and law \((\xi_ i)\) equivalent to law \((\eta_ i)\), \(i=1,2,...\); then the following are equivalent: (i) law (\(\xi)\) is not orthogonal to law (\(\eta)\); (ii) law (\(\xi)\) is equivalent to law (\(\eta)\); (iii) law (\(\xi)\) and law (\(\eta)\) are equivalent to the product measure \(\otimes_ i\) law \((\xi_ i)\). Besides the intrinsic interest of the theorem, the technique of proof used is significant.
0 references
marginal distributions
0 references
Gaussian measure
0 references
product measure
0 references
Hellinger distance
0 references