Wachstumseigenschaften ganzer Funktionen mit negativen Nullstellen (Q792483)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Wachstumseigenschaften ganzer Funktionen mit negativen Nullstellen |
scientific article; zbMATH DE number 3853433
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Wachstumseigenschaften ganzer Funktionen mit negativen Nullstellen |
scientific article; zbMATH DE number 3853433 |
Statements
Wachstumseigenschaften ganzer Funktionen mit negativen Nullstellen (English)
0 references
1983
0 references
Let f(z) be an entire function with order and lower order \(\rho\) and \(\lambda\) respectively. Generalizing earlier results concerning the maximum and minimum modulus on \(| z| =r\) the author compares the growth of the function in two different directions \(\theta\) and \(\phi\), supposing that all zeros are negative and \(\rho\) non-integral. If the upper and lower limits (as \(r\to \infty)\) of \(\log | f(re^{i\theta})| /\log | f(re^{i\phi})|\) are denoted A and B, a main result is that \(A\geq \cos \rho \theta /\cos \rho \phi \geq B\) when \(\phi\) is restricted to certain intervals of total length \(\pi\) (more special results if \(\rho\) or \(\lambda<1)\). The method consists of skillful use of integral equalities and inequalities.
0 references
maximum and minimum modulus
0 references
integral equalities and inequalities
0 references