The intervals of the lattice of recursively enumerable sets determined by major subsets (Q793018)

From MaRDI portal





scientific article; zbMATH DE number 3855087
Language Label Description Also known as
English
The intervals of the lattice of recursively enumerable sets determined by major subsets
scientific article; zbMATH DE number 3855087

    Statements

    The intervals of the lattice of recursively enumerable sets determined by major subsets (English)
    0 references
    0 references
    0 references
    1983
    0 references
    Define for set X the lattice \({\mathcal E}(X)=\{W_ e\cap X:W_ e\quad is\quad r.e.\quad set\}\) and \({\mathcal E}^*(X)\) be the lattice \({\mathcal E}(X)\) modulo the ideal of finite sets. Let B be a major subset of A, \(B\subset_ mA\). The main theorem is: if \(B\subset_ mA\) and \(\hat B\subset_ m\hat A\), then \({\mathcal E}^*(A-B)\cong {\mathcal E}^*(\hat A- \hat B).\)
    0 references
    lattice of recursively enumerable sets
    0 references
    major subset
    0 references

    Identifiers