Ein metrischer Satz der C-Gleichverteilung (Q794701)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ein metrischer Satz der C-Gleichverteilung |
scientific article; zbMATH DE number 3859245
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ein metrischer Satz der C-Gleichverteilung |
scientific article; zbMATH DE number 3859245 |
Statements
Ein metrischer Satz der C-Gleichverteilung (English)
0 references
1984
0 references
The authors establish an analog of the fundamental metric theorem of \textit{H. Davenport}, \textit{P. Erdős}, and \textit{W. J. LeVeque} [Mich. Math. J. 10, 311--314 (1963; Zbl 0119.28201)] in the context of continuously uniformly distributed (c.u.d.) functions mod 1. This leads to various interesting extensions of an earlier metric theorem of \textit{E. Hlawka} [Monatsh. Math. 74, 108--118 (1970; Zbl 0208.31304)]. For instance, if \(\alpha>0\) is given, then \(f(t^{\alpha})\) is a c.u.d. function mod 1 for almost all (in the sense of the Wiener measure) real-valued continuous functions \(f\) on \([0,\infty)\). Furthermore, \(\int^{t}_{0}f(u)\,du\) is a c.u.d. function mod 1 for almost all real-valued continuous functions \(f\) on \([0,\infty)\).
0 references
continuously uniformly distributed functions mod one
0 references
metric theorem
0 references
real-valued continuous functions
0 references