Analyse harmonique sur les groupes de Heisenberg généralisés (Q795936)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Analyse harmonique sur les groupes de Heisenberg généralisés |
scientific article; zbMATH DE number 3863502
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Analyse harmonique sur les groupes de Heisenberg généralisés |
scientific article; zbMATH DE number 3863502 |
Statements
Analyse harmonique sur les groupes de Heisenberg généralisés (English)
0 references
1984
0 references
Let \(G=(X_ 1,X_ 2,X_ 3)_ B\) be the generalized Heisenberg group as defined by \textit{H. Reiter} in [Comment. Math. Helv. 49, 333-364 (1974; Zbl 0292.43007)]. Under some natural conditions on G involving not the separability, we clarify the unitary irreducible representations of G. We prove a Fourier inversion formula and determine a space of functions \(\phi\) on G for which \(\pi\) (\(\phi)\) is a Hilbert-Schmidt operator for every irreducible representation \(\pi\) of G.
0 references
generalized Heisenberg group
0 references
unitary irreducible representations
0 references
Fourier inversion formula
0 references
0.9287758
0 references
0.91970855
0 references
0.90136135
0 references
0.89284855
0 references
0.88937986
0 references
0.88060325
0 references