Oberflächeninstabilitäten magnetischer Flüssigkeiten (Q798137)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Oberflächeninstabilitäten magnetischer Flüssigkeiten |
scientific article; zbMATH DE number 3870855
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Oberflächeninstabilitäten magnetischer Flüssigkeiten |
scientific article; zbMATH DE number 3870855 |
Statements
Oberflächeninstabilitäten magnetischer Flüssigkeiten (English)
0 references
1983
0 references
The author continues a previous work about periodic equilibrium states of a magnetic fluid in an exterior magnetic field [Z. Angew. Math. Mech. 60, 235-2400 (1980; Zbl 0462.76044]. In this paper he calculates holohedry- invariant equilibrium solutions \(\eta\) on periodic hexagonal lattices \(\Lambda\). Giving the corresponding variation principle in terms of the energy E he looks for \(\Lambda\) -periodic solutions, which are elements of the Sobolev spaces \(H_ m\). They are shown to be analytic for \(m\geq 3\). For \(m\geq 4\), the first variation \(E_{\eta}\) is an analytic map between \(H_ m\) and \(H_{m-2}\). The equilibrium conditions are invariant with respect to the maximal subgroup G of the orthogonal group O(2). The on set of instability at a critical magnetic field \(H_{cr}\) is related to the eigenvalue zero of the second variation \(E_{\eta\eta }\), having the multiplicity six. Zero is only a nondegenerate eigenvalue on the subspaces \(H^ G_ m\) of G-invariant functions of \(H_ m\). Finally, approximate solutions of the scalar bifurcation equation are discussed in \(H^ G_ m\).
0 references
periodic equilibrium states
0 references
magnetic fluid
0 references
exterior magnetic field
0 references
holohedry-invariant equilibrium solutions
0 references
hexagonal lattices
0 references
variation principle
0 references
Sobolev spaces
0 references
on set of instability
0 references
critical magnetic field
0 references
scalar bifurcation equation
0 references