Uniqueness theorems for entire functions of exponential type (Q798797)

From MaRDI portal





scientific article; zbMATH DE number 3871731
Language Label Description Also known as
English
Uniqueness theorems for entire functions of exponential type
scientific article; zbMATH DE number 3871731

    Statements

    Uniqueness theorems for entire functions of exponential type (English)
    0 references
    0 references
    1984
    0 references
    Let f be an entire function of exponential type \(\tau <\pi\), \(| f(m)| <M,\) and \(Re f(m)=0\) for \(m=0,\pm 1,\pm 2,... .\) Then if \(\sum| Im f(m)| <\infty\) and if either \(Re f(m+i)\quad or\quad Im f(m+i)=0,\) except on a set of density less than 1-(\(\tau\) /\(\pi)\), then \(f(z)\equiv 0.\) The results do not hold if \(\tau =\pi\). The proofs are by an application of Fourier analysis.
    0 references
    entire function of exponential type
    0 references
    0 references
    0 references
    0 references

    Identifiers