Uniqueness theorems for entire functions of exponential type (Q798797)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Uniqueness theorems for entire functions of exponential type |
scientific article; zbMATH DE number 3871731
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Uniqueness theorems for entire functions of exponential type |
scientific article; zbMATH DE number 3871731 |
Statements
Uniqueness theorems for entire functions of exponential type (English)
0 references
1984
0 references
Let f be an entire function of exponential type \(\tau <\pi\), \(| f(m)| <M,\) and \(Re f(m)=0\) for \(m=0,\pm 1,\pm 2,... .\) Then if \(\sum| Im f(m)| <\infty\) and if either \(Re f(m+i)\quad or\quad Im f(m+i)=0,\) except on a set of density less than 1-(\(\tau\) /\(\pi)\), then \(f(z)\equiv 0.\) The results do not hold if \(\tau =\pi\). The proofs are by an application of Fourier analysis.
0 references
entire function of exponential type
0 references
0.9584855
0 references
0.93832296
0 references
0.9373788
0 references
0 references
0 references
0.92983556
0 references
0 references