Nonlinear eigenvalues problems with a small parameter (Q799870)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nonlinear eigenvalues problems with a small parameter |
scientific article; zbMATH DE number 3873881
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nonlinear eigenvalues problems with a small parameter |
scientific article; zbMATH DE number 3873881 |
Statements
Nonlinear eigenvalues problems with a small parameter (English)
0 references
1984
0 references
In this work we study nonlinear eigenvalues problems like \([-\sigma^ 2d^ 2/dt^ 2+(t^ 2-\mu)^ 2+1]u=0\) where \(\mu \in {\mathbb{C}}\), \(\sigma >0\), \(u\in {\mathcal S}({\mathbb{R}}^ n)\). More precisely we study the spectrum of the operator \(Q(\sigma;\mu)=-\sigma^ 2d^ 2/dt^ 2+(t^ 2-\mu)^ 2+1\) when \(\sigma \to 0\), \(\sigma >0\). Our method of proof consists in replacing our problem by a linear eigenvalue problem about a non self adjoint system.
0 references
small parameter
0 references
nonlinear eigenvalues problems
0 references
spectrum
0 references
0 references
0 references
0 references
0 references
0 references
0.92760617
0 references