Sur les inégalités valides dans \(L^ 1\) (Q800640)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur les inégalités valides dans \(L^ 1\) |
scientific article; zbMATH DE number 3876085
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur les inégalités valides dans \(L^ 1\) |
scientific article; zbMATH DE number 3876085 |
Statements
Sur les inégalités valides dans \(L^ 1\) (English)
0 references
1984
0 references
A metric subspace (X,d) of the space \(L^ 1\) is hypermetric, if \(\sum^{n}_{i=1}\sum^{n}_{j=1}t_ it_ jd(x_ i,x_ j)\leq 0\) is satisfied for every integer \(n\geq 2,\) every elements \(x_ 1,...,x_ n\) of X and every integers \(t_ 1,...,t_ n\) with \(\sum^{n}_{i=1}t_ i=1.\) The author establishes first a necessary and sufficient condition (expressed in terms of lattices in a Euclidean space) for a metric space (X,d) to be hypermetric. A series of properties of a hypermetric space, especially those related to the equality cases of polygonal inequalities are studied in the second part of the paper. In the last part the author proves that each maximal graph (i.e. a graph \(G=(V,E)\) for which \(| E\Delta\{(i,j)\in V^ 2| f(i)f(j)=- 1\}|\leq | E|\) for every \(f: V\to\{-1,1\})\) gives rise to an inequality valid for all metric subspaces of \(L^ 1\).
0 references
hypermetric space
0 references