Imbedding theorems for spaces of infinitely differentiable functions (Q802112)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Imbedding theorems for spaces of infinitely differentiable functions |
scientific article; zbMATH DE number 3881299
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Imbedding theorems for spaces of infinitely differentiable functions |
scientific article; zbMATH DE number 3881299 |
Statements
Imbedding theorems for spaces of infinitely differentiable functions (English)
0 references
1984
0 references
Der Verf. betrachtet die Dubinskij-Räume \[ W^{\infty}\{a_ n,p,r\}(G)=\{u(x)\in C^{\infty}(G),\rho (u)<\infty \}, \] wobei \(\rho (u)=\sum^{\infty}_{n=0}a_ n\| D^ nu\|^ p_ r\) mit \(p\geq 1\), \(r\geq 1\), \(0<a_{n+1}\leq a^ 2_ n<1\), \(n=0,1,..\). und \(\|.\|_ r\) die Norm im Lebesgueraum \(L_ r(G)\) ist, \(G\subset {\mathbb{R}}\). Der Verf. zeigt, daß für die Einbettung \[ (*)\quad W^{\infty}\{a_ n,p,r\}(G)\subset W^{\infty}\{c_ n,p,r\}(G) \] die Bedingung \(\overline{\lim}_{n\to \infty}c_ n/a_ n=A<\infty\) notwendig und hinreichend ist; und die Einbettung (*) ist kompakt, dann und nur dann, wenn \(\lim_{n\to \infty}c_ n/a_ n=0.\)
0 references
Dubinskij-spaces
0 references
compact imbedding
0 references