Non-Gaussian closure technique for stationary random vibration (Q802333)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Non-Gaussian closure technique for stationary random vibration |
scientific article; zbMATH DE number 3890797
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Non-Gaussian closure technique for stationary random vibration |
scientific article; zbMATH DE number 3890797 |
Statements
Non-Gaussian closure technique for stationary random vibration (English)
0 references
1985
0 references
The classical method of statistical linearization when applied to a nonlinear oscillator excited by stationary wide-band random excitation, can be considered as a procedure in which the unknown parameters in a Gaussian distribution are evaluated by means of moment identities derived from the dynamic equation of the oscillator. A systematic extension of this procedure is the method of non-Gaussian closure in which an increasing number of moment identities are used to evaluate additional parameters in a family of non-Gaussian response distributions. The method is described and illustrated by means of examples. Attention is given to the choice of representations of non-Gaussian distributions and to techniques for generating independent moment identities directly from the differential equation of the nonlinear oscillator. Some shortcomings of the method are pointed out.
0 references
stationary random vibration
0 references
non-Gaussian closure
0 references
non-Gaussian response distributions
0 references
moment identities
0 references