Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen (Q802622)

From MaRDI portal





scientific article; zbMATH DE number 3891522
Language Label Description Also known as
English
Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen
scientific article; zbMATH DE number 3891522

    Statements

    Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen (English)
    0 references
    1985
    0 references
    For abelian varieties with complex multiplication, the dimension of the \({\bar {\mathbb{Q}}}\)-vector space generated by the periods of first and second kind is computed. Applied to the Jacobian of the Fermat curves, this result and the criteria of Shimura-Taniyama and Deligne-Koblitz-Ogus give an optimal theorem on the linear independence of the values \(B(a_ 1,b_ 1),...,B(a_ n,b_ n)\) of the Beta-function at rational arguments \(a_ j, b_ j:\) They are \({\bar {\mathbb{Q}}}\)-linearly dependent only in the obvious case, namely if this dependence already arises from the classical Gauss-Legendre identities for the values of the \(\Gamma\)- function. - This theorem gives in turn a partial answer to a transcendence question in uniformization theory raised by S. Lang: Let X be a smooth projective algebraic curve, defined over \({\bar {\mathbb{Q}}}\) and of genus \(g>1\), and \(\phi:\quad U_ r:=\{\zeta \in {\mathbb{C}}| | \zeta | <r\}\to X\) a normalized holomorphic covering map, i.e. with \(\phi\) (0)\(\in X({\bar {\mathbb{Q}}})\) and tangential map \(\phi\) '(0) defined over \({\bar {\mathbb{Q}}}\); is then the ''covering radius'' r a transcendental number? The answer is ''yes'' if X has many automorphisms - e.g. Fermat curves, Klein's curve - and \(\phi\) (0) is a fixed point, because in this case the covering radius is the quotient of two Beta-values which are \({\bar {\mathbb{Q}}}\)-linearly independent.
    0 references
    abelian varieties with complex multiplication
    0 references
    periods of first and second kind
    0 references
    Jacobian of the Fermat curves
    0 references
    linear independence of values of the Beta-function
    0 references
    covering radius
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references