Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen (Q802622)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen |
scientific article; zbMATH DE number 3891522
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen |
scientific article; zbMATH DE number 3891522 |
Statements
Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen (English)
0 references
1985
0 references
For abelian varieties with complex multiplication, the dimension of the \({\bar {\mathbb{Q}}}\)-vector space generated by the periods of first and second kind is computed. Applied to the Jacobian of the Fermat curves, this result and the criteria of Shimura-Taniyama and Deligne-Koblitz-Ogus give an optimal theorem on the linear independence of the values \(B(a_ 1,b_ 1),...,B(a_ n,b_ n)\) of the Beta-function at rational arguments \(a_ j, b_ j:\) They are \({\bar {\mathbb{Q}}}\)-linearly dependent only in the obvious case, namely if this dependence already arises from the classical Gauss-Legendre identities for the values of the \(\Gamma\)- function. - This theorem gives in turn a partial answer to a transcendence question in uniformization theory raised by S. Lang: Let X be a smooth projective algebraic curve, defined over \({\bar {\mathbb{Q}}}\) and of genus \(g>1\), and \(\phi:\quad U_ r:=\{\zeta \in {\mathbb{C}}| | \zeta | <r\}\to X\) a normalized holomorphic covering map, i.e. with \(\phi\) (0)\(\in X({\bar {\mathbb{Q}}})\) and tangential map \(\phi\) '(0) defined over \({\bar {\mathbb{Q}}}\); is then the ''covering radius'' r a transcendental number? The answer is ''yes'' if X has many automorphisms - e.g. Fermat curves, Klein's curve - and \(\phi\) (0) is a fixed point, because in this case the covering radius is the quotient of two Beta-values which are \({\bar {\mathbb{Q}}}\)-linearly independent.
0 references
abelian varieties with complex multiplication
0 references
periods of first and second kind
0 references
Jacobian of the Fermat curves
0 references
linear independence of values of the Beta-function
0 references
covering radius
0 references
0 references
0 references
0 references
0 references