On generalization of continued fraction of Gauss (Q802643)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On generalization of continued fraction of Gauss |
scientific article; zbMATH DE number 4198064
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On generalization of continued fraction of Gauss |
scientific article; zbMATH DE number 4198064 |
Statements
On generalization of continued fraction of Gauss (English)
0 references
1990
0 references
Given parameters a,b,d,c,q and variable x with \(| dc/(ab)| <| x| <1\), \(| q| <1\), let \[ G(a,b;d,c;x)=\sum^{\infty}_{n=- \infty}[a]_ n[b]_ nx^ n/([d]_ n[c]_ n), \] where \([a]_ n=(1- a)(1-aq)...(1-aq^{n-1})\), \([a]_ 0=1\). The following generalization of Gauss' continued fraction is established: \[ G(a,bq;d,cq;x)/G(a,b;d,c;x)=\frac{1}{A_ 0+}\frac{xB_ 0}{C_ 0+}\frac{xD_ 0}{A_ 1+}\frac{xB_ 1}{C_ 1+}\frac{xD_ 1}{A_ 2+}\frac{xB_ 2}{C_ 2+}... \] where A\({}_ i=(1-bq^ i)(cq^{2i+1}-d)/((1-cq^{2i})(bq^{i+1}-d)),\) B\({}_ i=q^{i+1}(1-aq^ i)(1-bq^ i)(b-cq^ i)/((1-cq^{2i+1})(1- cq^{2i})(bq^{i+1}-d)),\) C\({}_ i=(1-aq^ i)(cq^{2i+2}-d)/((1-cq^{2i+1})(aq^{i+1}-d)),\) D\({}_ i=q^{i+1}(1-bq^{i+1})(1-aq^ i)(a-cq^{i+1})/((1- cq^{2i+1})(1-cq^{2i+2})(aq^{i+1}-d)),\) (i\(=0,1,2,...)\). Several interesting consequences are derived.
0 references
basic bilateral hypergeometric series
0 references
generalization of Gauss' continued fraction
0 references