Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity (Q802848)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity |
scientific article; zbMATH DE number 4198550
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity |
scientific article; zbMATH DE number 4198550 |
Statements
Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity (English)
0 references
1990
0 references
The regularized conservation law (1) \(u_ t+(\phi (u))_ x=\epsilon (a(u)u_ x)_ x\) with a(u) strictly positive and \(\phi\) (u) not necessarily convex is studied. It is shown that as time approaches infinity, the solution of (1) converges along rays to the solution of a certain Riemann problem for the hyperbolic conservation law, even when this conservation law is not genuinely nonlinear.
0 references
regularized conservation law
0 references
0 references
0 references
0 references
0 references