A generalization of a formula of Ramanujan (Q803134)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalization of a formula of Ramanujan |
scientific article; zbMATH DE number 4200208
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalization of a formula of Ramanujan |
scientific article; zbMATH DE number 4200208 |
Statements
A generalization of a formula of Ramanujan (English)
0 references
1990
0 references
Let \(k_{n+1}=\sum^{n+1}_{k=1}\frac{1}{2k-1}\), \(n=0,1,2,...,then\) for \(\frac{1}{2}<x<1\), Ramanujan's formula \[ \sum^{\infty}_{k=0}\frac{1}{(2k+1)^ 2}(\frac{x}{1+x})^{k+1}=\sum^{\infty}_{n=0}\frac{(-1)^ n2^{2n}(n!)^ 2h_{n+1}x^{n+1}}{(2n+1)!} \] has been proved. In this paper this formula is generalized and proved as follows: Let \(h^{(0)}_{n+1}=1\), \(n=0,1,2,...\), and \(h^{(p)}_{n+1}=\sum^{n+1}_{k=1}\frac{h_ k^{(p-1)}}{2k-1}\), \(n=0,1,2,...\), then for each \(p=0,1,2,...\), in the set \(\{\) \(z| Re z>-\frac{1}{2}\}\cap \{z| | z| <1\}\) \[ \sum^{\infty}_{k=0}\frac{1}{(2k+1)^{p+1}}(\frac{z}{z+1})^{k+1}=\sum^{\infty} _{k=0}\frac{(-1)^ n2^{2n}(n!)^ 2h^{(p)}_{n+1}z^{n+1}}{(2n+1)!}. \] Two explicit representations of the numbers \(h^{(p)}_{n+1}\) are also given.
0 references
Ramanujan's formula
0 references