Über trigonometrische Reihen mit zahlentheoretischen Koeffizienten. (On some trigonometric series with number theoretic coefficients) (Q803197)

From MaRDI portal





scientific article; zbMATH DE number 4200304
Language Label Description Also known as
English
Über trigonometrische Reihen mit zahlentheoretischen Koeffizienten. (On some trigonometric series with number theoretic coefficients)
scientific article; zbMATH DE number 4200304

    Statements

    Über trigonometrische Reihen mit zahlentheoretischen Koeffizienten. (On some trigonometric series with number theoretic coefficients) (English)
    0 references
    0 references
    0 references
    1991
    0 references
    The authors study the series \(T(\alpha)=\sum_{p prime}\frac{\sin (2\pi p\alpha)}{p}\). It is shown that it is uniformly convergent for \(\alpha\in {\mathbb{R}}\). The function T is nondifferentiable on a noncountable set of measure zero and nowhere of bounded variation. It is highly probable that T is nowhere differentiable, but this seems to be a hard problem. In the proofs estimates for exponential sums with primes (Vinogradov's bound) and the theorem of Siegel-Walfisz are used. The main ideas are similar to those introduced by the authors in two earlier papers [Math. Z. 149, 155- 167 (1976; Zbl 0312.10026); Acta Math. Acad. Sci. Hung. 33, 263-288 (1979; Zbl 0419.10036)].
    0 references
    trigonometric series
    0 references
    nondifferentiability
    0 references
    estimates for exponential sums
    0 references
    theorem of Siegel-Walfisz
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references