Sur les caractères des groupes de Lie résolubles. (On characters of soluble Lie groups.) (Q803297)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur les caractères des groupes de Lie résolubles. (On characters of soluble Lie groups.) |
scientific article; zbMATH DE number 4200504
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur les caractères des groupes de Lie résolubles. (On characters of soluble Lie groups.) |
scientific article; zbMATH DE number 4200504 |
Statements
Sur les caractères des groupes de Lie résolubles. (On characters of soluble Lie groups.) (English)
0 references
1991
0 references
We consider a connected, solvable, unimodular Lie group G. Let \({\mathfrak g}\) be the Lie algebra of G. Let \({\mathfrak l}\) be in the dual of \({\mathfrak g}\). Under the assumption that \({\mathfrak g}({\mathfrak l})\) is reductive in \({\mathfrak g}\), we construct a map \(\phi \to F_{{\mathfrak l},\phi}\) from D(G) to the space of \(C^{\infty}\) functions on an open dense subset of G(\({\mathfrak l})\). Using this map we give a formula for the trace of the operator n(\({\mathfrak l},G)(\phi)\), where n(\({\mathfrak l},G)\) is the unitary representation of G associated to \({\mathfrak l}\). This formula applies to the square-integrable representations modulo Z(G) of the group G.
0 references
connected, solvable, unimodular Lie group
0 references
Lie algebra
0 references
trace
0 references
unitary representation
0 references
square-integrable representations
0 references
0 references