Sur les caractères des groupes de Lie résolubles. (On characters of soluble Lie groups.) (Q803297)

From MaRDI portal





scientific article; zbMATH DE number 4200504
Language Label Description Also known as
English
Sur les caractères des groupes de Lie résolubles. (On characters of soluble Lie groups.)
scientific article; zbMATH DE number 4200504

    Statements

    Sur les caractères des groupes de Lie résolubles. (On characters of soluble Lie groups.) (English)
    0 references
    0 references
    1991
    0 references
    We consider a connected, solvable, unimodular Lie group G. Let \({\mathfrak g}\) be the Lie algebra of G. Let \({\mathfrak l}\) be in the dual of \({\mathfrak g}\). Under the assumption that \({\mathfrak g}({\mathfrak l})\) is reductive in \({\mathfrak g}\), we construct a map \(\phi \to F_{{\mathfrak l},\phi}\) from D(G) to the space of \(C^{\infty}\) functions on an open dense subset of G(\({\mathfrak l})\). Using this map we give a formula for the trace of the operator n(\({\mathfrak l},G)(\phi)\), where n(\({\mathfrak l},G)\) is the unitary representation of G associated to \({\mathfrak l}\). This formula applies to the square-integrable representations modulo Z(G) of the group G.
    0 references
    connected, solvable, unimodular Lie group
    0 references
    Lie algebra
    0 references
    trace
    0 references
    unitary representation
    0 references
    square-integrable representations
    0 references

    Identifiers