Singularly perturbed boundary value problem for linear equations with turning points (Q803373)

From MaRDI portal





scientific article; zbMATH DE number 4200661
Language Label Description Also known as
English
Singularly perturbed boundary value problem for linear equations with turning points
scientific article; zbMATH DE number 4200661

    Statements

    Singularly perturbed boundary value problem for linear equations with turning points (English)
    0 references
    0 references
    1991
    0 references
    The author considers a boundary value problem \(\epsilon^ 2y''+f(x,\epsilon)y'+g(x,\epsilon)y+h(x,\epsilon)=0,\) \(y(- a)=A(\epsilon),\quad y(b)=B(\epsilon),\) where \(a,b>0\), \(\epsilon >0\) is a small parameter and \(f(0,0)=0\), i.e. \(x=0\) is the turning point. Using asymptotic expansions of the functions f,g,h,A and B with powers \(1,\epsilon,...,\epsilon^ n\), the author first constructs a formal solution \(Y_ n(x,\epsilon)\). Then he proves the existence of a (unique) solution y(x,\(\epsilon\)) for the above mentioned problem satisfying the estimate \(| y(x,\epsilon)-Y_ n(x,\epsilon)| \leq C\epsilon^{n+1},\quad -a\leq x\leq b\).
    0 references
    asymptotic expansion at a turning point
    0 references
    parameter is BVP for linear equations
    0 references
    small parameter
    0 references
    estimate
    0 references
    0 references

    Identifiers