Estimates for degenerate Schrödinger operators and an application for infinitely degenerate hypoelliptic operators (Q803391)

From MaRDI portal





scientific article; zbMATH DE number 4200719
Language Label Description Also known as
English
Estimates for degenerate Schrödinger operators and an application for infinitely degenerate hypoelliptic operators
scientific article; zbMATH DE number 4200719

    Statements

    Estimates for degenerate Schrödinger operators and an application for infinitely degenerate hypoelliptic operators (English)
    0 references
    0 references
    1989
    0 references
    Betrachte ein Symbol \(a(x,\xi)=\sum^{n}_{k=1}a_ k(x)| \xi_ k|^{2\mu_ k}+V(x)\) \((x\in {\mathbb{R}}^ n)\), \(\mu_ k\in {\mathbb{Q}}\), \(\mu_ k>0\), V nichtnegativ und meßbar. Sei W: \({\mathbb{R}}^ n\to {\mathbb{R}}\) stetig, (,) das Skalarprodukt in \(L^ 2({\mathbb{R}}^ n_ x)\). Es werden Voraussetzungen angegeben, unter denen gilt: \(\forall K\subset {\mathbb{R}}^ n_ x\exists c_ K>0\forall u\in C^{\infty}_ 0(K):\) \((a(x,D)u,u)\geq c_ K(W(x)u,u)\), bzw. \(\forall u\in C^{\infty}_ 0(K):\) (a(x,D)u,u)\(\geq 0\). Ein Beispiel eines entarteten elliptischen Operators wird untersucht.
    0 references
    0 references
    infinitely degenerate hypoelliptic operators
    0 references
    symbol
    0 references
    positive definite
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references