Exterior algebras and the quadratic reciprocity law (Q805649)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Exterior algebras and the quadratic reciprocity law |
scientific article; zbMATH DE number 4204421
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Exterior algebras and the quadratic reciprocity law |
scientific article; zbMATH DE number 4204421 |
Statements
Exterior algebras and the quadratic reciprocity law (English)
0 references
1990
0 references
If M is a module then, in the exterior algebra of M, \[ \bigwedge^{m}_{i=1}\bigwedge^{n}_{j=1}a_{i,j}=(-1)^{\left( \begin{matrix} m\\ 2\end{matrix} \right)\left( \begin{matrix} n\\ 2\end{matrix} \right)}\bigwedge^{n}_{j=1}\bigwedge^{m}_{i=1}a_{i,j} \] for all \(a_{i,j}\in M\). The author shows that this identity is equivalent when m and n are odd and relatively prime to the reciprocity law for the Jacobi symbol \[ (\frac{n}{m})=(-1)^{\frac{m-1}{2}\frac{n- 1}{2}}(\frac{m}{2}). \]
0 references
law of quadratic reciprocity
0 references
exterior algebra
0 references
Jacobi symbol
0 references
0 references
0.8816445
0 references
0.8812648
0 references
0.87940526
0 references