Exterior algebras and the quadratic reciprocity law (Q805649)

From MaRDI portal





scientific article; zbMATH DE number 4204421
Language Label Description Also known as
English
Exterior algebras and the quadratic reciprocity law
scientific article; zbMATH DE number 4204421

    Statements

    Exterior algebras and the quadratic reciprocity law (English)
    0 references
    0 references
    1990
    0 references
    If M is a module then, in the exterior algebra of M, \[ \bigwedge^{m}_{i=1}\bigwedge^{n}_{j=1}a_{i,j}=(-1)^{\left( \begin{matrix} m\\ 2\end{matrix} \right)\left( \begin{matrix} n\\ 2\end{matrix} \right)}\bigwedge^{n}_{j=1}\bigwedge^{m}_{i=1}a_{i,j} \] for all \(a_{i,j}\in M\). The author shows that this identity is equivalent when m and n are odd and relatively prime to the reciprocity law for the Jacobi symbol \[ (\frac{n}{m})=(-1)^{\frac{m-1}{2}\frac{n- 1}{2}}(\frac{m}{2}). \]
    0 references
    law of quadratic reciprocity
    0 references
    exterior algebra
    0 references
    Jacobi symbol
    0 references

    Identifiers