Pointwise and uniform convergence with probability 1 of nonparametric regression estimators (Q806855)

From MaRDI portal





scientific article; zbMATH DE number 4205638
Language Label Description Also known as
English
Pointwise and uniform convergence with probability 1 of nonparametric regression estimators
scientific article; zbMATH DE number 4205638

    Statements

    Pointwise and uniform convergence with probability 1 of nonparametric regression estimators (English)
    0 references
    0 references
    0 references
    1989
    0 references
    The authors study the pointwise and uniform convergence with probability one for nonparametric regression estimators constructed with the help of a convex function \(\Phi\). When \(\Phi (u)=u^ 2\) one gets the Nadaraya- Watson estimator, and for any other function one gets a nonlinear nonparametric M-estimator. It is shown that if \(\delta_ n\) is the estimation window, under certain regularity conditions for the functions involved one has pointwise convergence w.p.1 for \[ \delta_ n\to 0\text{ and } n \delta_ n^ d/\log \log n\to +\infty. \] If \(B\subset {\mathbb{R}}^ d\), under certain additional hypothesis and for \[ \delta_ n\to 0,\quad n \delta_ n^{d+1/p}/\log n\to +\infty \] there is uniform convergence on B w.p.1.
    0 references
    pointwise convergence with probability one
    0 references
    local approximation
    0 references
    nonparametric regression
    0 references
    uniform convergence with probability one
    0 references
    nonparametric regression estimators
    0 references
    convex function
    0 references
    Nadaraya-Watson estimator
    0 references
    nonlinear nonparametric M-estimator
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references