The Keldysh-Fichera boundary value problems for degenerate quasilinear elliptic equations of second order (Q807846)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Keldysh-Fichera boundary value problems for degenerate quasilinear elliptic equations of second order |
scientific article; zbMATH DE number 4208651
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Keldysh-Fichera boundary value problems for degenerate quasilinear elliptic equations of second order |
scientific article; zbMATH DE number 4208651 |
Statements
The Keldysh-Fichera boundary value problems for degenerate quasilinear elliptic equations of second order (English)
0 references
1989
0 references
The authors consider the following equation \[ D_ i[a_{ij}(x,u)D_ ju+b_ i(x)u]-c(x,u)=f(x),\quad x\in \Omega \subset R^ m, \] where \(\beta^{-1}a_{ij}(x,0)\xi_ i\xi_ j\leq a_{ij}(x,z)\xi_ i\xi_ j\leq \beta a_{ij}(x,0)\xi_ i\xi_ j\), \(\beta =const>0\), \(\lambda (x)| \xi |^ 2\leq a_{ij}(x,0)\xi_ i\xi_ j\), \(\lambda\) (x)\(\geq 0\) on \({\bar \Omega}\), with boundary conditions \(u(x)=0\), \(x\in \Sigma_ 2\cup \Sigma_ 3\), where \(\Sigma_ 3=\{x\in \partial \Omega |\) \(a_{ij}(x,0)n_ in_ j>0\), \(\vec n=(n_ 1,...,n_ m)\) is the unit outward normal vector at \(x\in \partial \Omega \},\) \(\Sigma\) \({}_ 2=\{x\in \partial \Omega \setminus \Sigma_ 3| b_ i(x)n_ i>0\}\), \(\Sigma_ 1=\partial \Omega \setminus (\Sigma_ 2\cup \Sigma_ 3).\) Under some assumptions, the authors prove that the above problem has a weak solution (in some integral sense) which is also unique under additional restrictions. In this connection they establish an acute angle principle for weakly continuous mappings, discuss maximum and comparison principles and a maximum modulus estimate.
0 references
Keldysh-Fichera boundary value problems
0 references
uniqueness
0 references
acute angle principle
0 references
maximum modulus estimate
0 references