Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields (Q807859)

From MaRDI portal





scientific article; zbMATH DE number 4208678
Language Label Description Also known as
English
Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields
scientific article; zbMATH DE number 4208678

    Statements

    Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields (English)
    0 references
    0 references
    1988
    0 references
    The Schrödinger operator H for a particle in \({\mathbb{R}}^ 3\) subjected to an electrostatical field with potential -V(x) and a homogeneous magnetic field of magnitude \(b>0\) is studied. If V(x)\(\to 0\) for \(| x| \to \infty\), then H has essential spectrum [b,\(\infty)\) and discrete spectrum below b. For \(\lambda >0\) let N(\(\lambda\)) be the number of eigenvalues (counted according to multiplicity) of H which are less than b. For V(x) satisfying \[ C^{-1}(1+| x|^ 2)^{- m/2}\leq V(x)\leq C(1+| x|^ 2)^{-m/2},\quad | \partial V(x)/\partial x_ j| \leq C_ j(1+| x|^ 2)^{-(m+1)/2} \] asymptotic formulas for N(\(\lambda\)), \(\lambda\to 0\), are proved. Essentially \[ N(\lambda)\sim 2(2\pi)^{-2} b\int (V(x)- \lambda)_+^{1/2}dx\text{ for } m\leq 2, \] \[ N(\lambda)\sim (2\pi)^{-1} b\quad vol[\{(x_ 1,x_ 2):\;\int V(x_ 1,x_ 2,x_ 3)dx_ 3>2\lambda^{1/2}\}]\text{ for } m>2. \]
    0 references
    discrete spectrum
    0 references
    number of eigenvalues
    0 references

    Identifiers