On the values of a zeta function at non-positive integers (Q810082)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the values of a zeta function at non-positive integers |
scientific article; zbMATH DE number 4212158
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the values of a zeta function at non-positive integers |
scientific article; zbMATH DE number 4212158 |
Statements
On the values of a zeta function at non-positive integers (English)
0 references
1990
0 references
Let \({\tilde \zeta}\)(s)\(=\sum_{n_ 1\geq 1,n_ 2\geq 1,n_ 3\geq 0}(n_ 1n_ 2+(n_ 1+n_ 2)n_ 3)^{-s}\) for Re s\(>3/2\). The authors prove that \({\tilde \zeta}\)(s) can be meromorphically continued to the whole complex plane, and evaluate explicitly the values of this zeta-function at non-positive integers in terms of Bernoulli numbers. It turns out that \({\tilde \zeta}\)(-m)\(\in {\mathbb{Q}}\) for \(m\in {\mathbb{Z}}\), \(m\geq 0\).
0 references
Epstein zeta-function
0 references
analytic continuation
0 references
Bernoulli numbers
0 references