On the values of a zeta function at non-positive integers (Q810082)

From MaRDI portal





scientific article; zbMATH DE number 4212158
Language Label Description Also known as
English
On the values of a zeta function at non-positive integers
scientific article; zbMATH DE number 4212158

    Statements

    On the values of a zeta function at non-positive integers (English)
    0 references
    0 references
    0 references
    1990
    0 references
    Let \({\tilde \zeta}\)(s)\(=\sum_{n_ 1\geq 1,n_ 2\geq 1,n_ 3\geq 0}(n_ 1n_ 2+(n_ 1+n_ 2)n_ 3)^{-s}\) for Re s\(>3/2\). The authors prove that \({\tilde \zeta}\)(s) can be meromorphically continued to the whole complex plane, and evaluate explicitly the values of this zeta-function at non-positive integers in terms of Bernoulli numbers. It turns out that \({\tilde \zeta}\)(-m)\(\in {\mathbb{Q}}\) for \(m\in {\mathbb{Z}}\), \(m\geq 0\).
    0 references
    0 references
    Epstein zeta-function
    0 references
    analytic continuation
    0 references
    Bernoulli numbers
    0 references

    Identifiers