Endoprime modules. (Q812802)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Endoprime modules. |
scientific article; zbMATH DE number 5001797
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Endoprime modules. |
scientific article; zbMATH DE number 5001797 |
Statements
Endoprime modules. (English)
0 references
26 January 2006
0 references
Let \(M\) be a right \(R\)-module over a ring \(R\) with identity. Then \(R\) is a left \(S\)-module over the endomorphism ring \(S=\text{End}(M_R)\). A nonzero right \(R\)-module \(M\) is called endoprime if every nonzero fully invariant submodule of \(M_R\) is faithful as a left \(S\)-module. The class of endoprime modules properly contains the class of prime modules in the sense of \textit{J. Zelmanowitz} [J. Algebra 25, 554-574 (1973; Zbl 0258.16002)]. The purpose of this paper is to study endoprime modules, and some general properties of endoprime \(R\)-modules are obtained. For example, the authors prove that \(M_R\) is endoprime if and only if the left \(S\)-module \(_SM\) is prime; if \(M_R\) is endoprime then \(S\) is a prime ring; if \(R\) is commutative and \(M_R\) is endoprime then \(M_R\) prime. Moreover, the structure of the ring \(S\) is determined when \(M\) is endoprime and, in addition, \(M\) is suitably restricted.
0 references
weakly co-Hopfian modules
0 references
fully invariant submodules
0 references
prime endomorphism rings
0 references
endoprime modules
0 references
prime modules
0 references
direct sums of simple modules
0 references
Morita invariants
0 references