Generalizations of the Riesz convergence theorem for Lorentz spaces (Q812816)

From MaRDI portal





scientific article; zbMATH DE number 5001807
Language Label Description Also known as
English
Generalizations of the Riesz convergence theorem for Lorentz spaces
scientific article; zbMATH DE number 5001807

    Statements

    Generalizations of the Riesz convergence theorem for Lorentz spaces (English)
    0 references
    0 references
    0 references
    26 January 2006
    0 references
    Let \(\| \cdot\| _{p,q}\) be the norm defined on a Lorentz space \(L^{p,q}\) and \(f,f_1,f_2,\ldots\in L^{p,q}\), \((0<p,q<\infty )\). Two convergence theorems are proved: \(\lim_{n\to \infty}\| f_n-f\| _{p,q}=0\) if \(\| f_n\| _{p,q}\to\| f\| _{p,q}<\infty\) and if \(f_n\to f\) a.e.\ (resp., if and only if \(f_n\to f\) on every subset of finite measure). For \(q=\infty\), these results are not true.
    0 references
    Riesz convergence theorem
    0 references
    convergence in Lorentz spaces
    0 references

    Identifiers