On an invariant-theoretic description of the lambda algebra (Q817051)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On an invariant-theoretic description of the lambda algebra |
scientific article; zbMATH DE number 5009692
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On an invariant-theoretic description of the lambda algebra |
scientific article; zbMATH DE number 5009692 |
Statements
On an invariant-theoretic description of the lambda algebra (English)
0 references
7 March 2006
0 references
Let \(p\) be an odd prime, \(\mathbb{F}_p\) the field of \(p\) elements and \(E_n\) an elementary abelian \(p\)-group of rank \(n\). The Borel subgroup \(B_n\) of the general linear group \(\text{Gl}_n(\mathbb{F}_p)\) acts on the localization, \(S^{-1}H^*(BE_n; \mathbb{F}_p)\), of \(H^*(BE_n;\mathbb{F}_p)\), with respect to the multiplicatively closed subset \(S\) generated by elements of degree 2 of \(H^*(BE_n;\mathbb{F}_p)\). Let \(\Delta_n=(S^{-1} H^*(BE_n;\mathbb{F}_p))^{B_n}\), \(\Delta=\bigoplus_{n\geq 0}\Delta_n\) where \(\Delta_0=\mathbb{F}_p\). The author constructs a differential graded algebra, as a subalgebra of a quotient of \(\Delta\), which is isomorphic to the mod \(p\) Lambda algebra. This generalizes a work of L. A. Lomonaco for the case \(p=2\).
0 references
invariants
0 references
localization
0 references
Borel subgroup
0 references
0.95310944
0 references
0.91920745
0 references
0.89918137
0 references
0.8980263
0 references
0.88713354
0 references
0 references
0 references
0.8737891
0 references