Infinite product identities for \(L\)-functions (Q819214)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Infinite product identities for \(L\)-functions |
scientific article; zbMATH DE number 5015537
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Infinite product identities for \(L\)-functions |
scientific article; zbMATH DE number 5015537 |
Statements
Infinite product identities for \(L\)-functions (English)
0 references
28 March 2006
0 references
Let \[ L(s, \pi \times \chi) = \prod_p \prod_{j=1}^{m_p}(1 - \chi(p) \alpha_j(p)p^{-s})^{-1} \] be Dirichlet series twisted by a character \(\chi\). The authors prove by elementary argument that \[ \prod_{N \geq 1}\;\prod_{\chi \pmod N} L(s+1, \pi \times \chi) = \frac{L(s, \pi)}{L(s+1, \pi)} \] and \[ \prod_{N \geq 1}\;\prod_{\substack{ \chi \pmod N\\ \chi(-1) =1}} L(s+1, \pi \times \chi) = \biggl(\frac{L(s, \pi)}{L_2(s+1, \pi_2)L(s+1, \pi)}\biggr)^{1/2} \] for \(Re(s) > 1 + \delta\). Here \(L_p(s, \pi_p) = \prod_j(1-\alpha_j(p)p^{-j})^{-1}\) denotes the local factor at the prime \(p\). A few examples illustrating special instances of these results are also given.
0 references
Identities for L-functions
0 references
0.93475544
0 references
0 references
0 references
0.8886113
0 references
0.88249373
0 references
0 references