The canonical subgroup of \(E\) is \(\operatorname{Spec} R[x]/ (x^p+ \frac{p}{E_{p-1}(E,\omega)} x)\) (Q819605)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The canonical subgroup of \(E\) is \(\operatorname{Spec} R[x]/ (x^p+ \frac{p}{E_{p-1}(E,\omega)} x)\) |
scientific article; zbMATH DE number 5016086
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The canonical subgroup of \(E\) is \(\operatorname{Spec} R[x]/ (x^p+ \frac{p}{E_{p-1}(E,\omega)} x)\) |
scientific article; zbMATH DE number 5016086 |
Statements
The canonical subgroup of \(E\) is \(\operatorname{Spec} R[x]/ (x^p+ \frac{p}{E_{p-1}(E,\omega)} x)\) (English)
0 references
29 March 2006
0 references