Some new bounds on the spectral radius of matrices (Q846322)

From MaRDI portal





scientific article; zbMATH DE number 5667897
Language Label Description Also known as
English
Some new bounds on the spectral radius of matrices
scientific article; zbMATH DE number 5667897

    Statements

    Some new bounds on the spectral radius of matrices (English)
    0 references
    0 references
    0 references
    0 references
    9 February 2010
    0 references
    Let \(A\in\mathbb{C}^{n\times n},B\in\mathbb{C}^{n\times n}\). The \textit{Fan product} of \(A\) and \(B\) is denoted by \(A\ast B=: C=(c_{i,j}) \in\mathbb{C}^{n\times n}\) and is defined by \[ c_{i,j}=\begin{cases} -a_{i,j}b_{i,j} & i\neq j \\ a_{i,i}b_{i,i} & i=j \end{cases} \] The paper initially presents an upper bound on the spectral radius \(\rho \left( J_{A}\right) \) for an M-matrix \(A\) (M-matrix is a non-singular square matrix with non-positive off-diagonal entries, positive diagonal entries, non-negative row sums, and at least one positive row sum) where \( J_{A}=-\left[\text{diag}\left(\frac{1}{a_{ii}}\right) \right] \left(A-\text{diag}\left( \frac{1}{a_{ii}}\right) \right) \). Then it presents a lower bound on the smallest eigenvalue \(\tau(A\ast B)\) for the Fan-product of two nonsingular M-matrices \(A\in\mathbb{C}^{n\times n},B\in\mathbb{C}^{n\times n}\) and an upper bound on the spectral radius \(\rho \left( A\circ B\right) \) for the Hadamard product of two nonnegative matrices \(A\) and \(B\).
    0 references
    M-matrix
    0 references
    nonnegative matrices
    0 references
    Fan product
    0 references
    Hadamard product
    0 references
    spectral radius
    0 references
    upper bound
    0 references
    lower bound
    0 references
    smallest eigenvalue
    0 references

    Identifiers